Buraco Negro- Parte 2


A queda no buraco negro e a natureza quântica

Se conseguíssemos observar uma queda real de um objeto num buraco negro, de acordo com as simulações virtuais, veríamos este mover-se cada vez mais devagar à medida que se aproximasse do núcleo maciço. SegundoEinstein, há um desvio para o vermelho, e este também é dependente da intensidade gravitacional. Isto se dá porque, sob o ponto de vista corpuscular, a luz é um pacote quântico com massa e ocupa lugar no espaço, portanto tem obrigatoriamente uma determinada velocidade de escape. Ao mesmo tempo, este pacote é onda de natureza eletromagnética e esta se propaga no espaço livre. É sabido que longe de campo gravitacional intenso, afrequência emitida tende para o extremo superior (no caso da luz visível, para o violeta).
À medida que o campo gravitacional começa a agir sobre a partícula (luz), esta aumentará seu comprimento de onda, logo desviará para o vermelho. Devido à dualidade matéria-energia não é possível analisar a partícula como matéria e energia ao mesmo tempo: ou se a enxerga sob o ponto de vista vibratório ou corpuscular.

[editar]A luz e a singularidade

Em simulações no espaço virtual, descobriu-se que próximo a campos maciços ocupando lugares singulares, a atração gravitacional é tão forte que pode fazer parar o movimento oscilatório, no caso da luz enxergada como comprimento de onda, esta literalmente se apaga. No caso da luz enxergada como objeto que possui velocidade de escape esta é atraída de volta à região de onde foi gerada, pois a velocidade de escape deve ser igual à velocidade de propagação, ambas sendo iguais, a luz matéria é atraída de volta. Logo, a radiação sendo atraída de volta, entra em colapso gravitacional, juntamente à massa que a criou, caindo sobre si mesma..

[editar]Simulação computadorizada

Visão simulada de um buraco negro em frente a Grande Nuvem de Magalhães. A razão entre o raio de Schwarzschild do buraco negro e a distância do observador é 1:9.
É possível simular em um computador as condições físicas que levam à formação de um buraco negro, como consequência do colapso gravitacional de uma estrela supergigante ou supernova. Para isso, os astrofísicos teóricos implementam complexos programas, que recriam as condições físicas da matéria e do espaço-tempodurante o processo de implosão das estrelas, as quais esgotam seu combustível nuclear e colapsam, com o transcorrer do tempo, devido a seu peso gravitacional, formando um objeto de densidade e curvatura do espaço-tempo infinita. Desses objetos, nada --- nem mesmo a luz consegue escapar. O resultado é a formação de uma singularidade gravitacional contida num buraco negro de Schwarzschild.
Um método para simulação computacional de um buraco negro é o Método de Monte Carlo. Neste método é possível a simulação de um buraco negro microscópico. O gerador de eventos de Monte Carlo neste método é o CATFISH (Collider grAviTational FIeld Simulator for black Holes), desenvolvido na Universidade do Mississippi. [5]

[editar]Termodinâmica

[editar]Termodinâmica de um buraco negro clássico

Um buraco negro, fisicamente, é um lugar de onde nem mesmo a luz pode escapar. Uma descrição matemática precisa dele é dada pelo espaço-tempo assintoticamente plano. A fronteira de um buraco negro é chamado de horizonte do evento. Schoen e Yau em 1983 formularam que uma superfície dentro de uma armadilha pode ser formada desde que uma quantidade suficiente de massa esteja confinada em um espaço suficientemente pequeno. Segue-se então dos teoremas de relatividade geral (Hawking e Hellis (1973)) que uma singularidade do espaço-tempo deve surgir. A partir destas grandes descobertas seguiram-se várias conclusões importantes como a solução da Equação de Maxwell-Einstein independente do tempo mostrando que buracos negros podem ser descritos por três simples parâmetros (massa, carga e momentum angular). Além disso, foi mostrado que energia pode ser extraída de buracos negros estacionários que estão girando ou carregados (Efeito Hawking). Foi, porém, a descoberta de uma analogia matemática entre buracos negros e a termodinâmica ordinária o maior avanço destas investigações (Bardeen et al , 1973). Nesta analogia a massa faz o papel de energia e, gravidade da superfície do buraco negro faz o papel da temperatura e a área do horizonte, da entropia. A analogia entre buracos negros e termodinâmica pode ser estendida além do formal, similaridade matemática pode ser encontrada no fato de que quantidades de pares de análogos são de fato fisicamente análogos. De acordo com a relatividade geral a massa total do buraco negro tem a mesma quantidade de sua energia total. [6]
Esta analogia é quebrada na Teoria Clássica, que considera a temperatura de um buraco negro igual ao zero absoluto

[editar]Entropia

Entropia é uma medida que caracteriza o número de estados internos de um buraco negro. A fórmula da entropia foi desenvolvida em 1974 pelo físico britânico Stephen Hawking.
S = \frac{Akc^3}{4 \hbar G}
Legenda:
  • S: Entropia
  • A: Área
  • k: Constante de Boltzmann
  • \hbar: Constante de Planck normalizada
  • G: Constante Gravitacional Universal de Newton
  • c: Velocidade da luz no vácuo
Esta equação pôde ser formulada levando-se em conta a teoria quântica. Então, admite-se que buracos negros emitem radiação térmica:
T= \frac{\hbar k}{2 \pi kb}
No caso especial da métrica de Schwarzschild:
T= \frac{ \hbar }{8 \pi GkM}
A formulação de Bekenstein-Hawking obtida da combinação entre a primeira lei e do fato de que dM=TdS. No Caso do buraco de Schwarzschild, esta formulação fica:
S= \frac{k \pi R^2}{g \hbar}
A entropia do buraco negro é muito maior que a entropia da estrela que se colapsou para que ele fosse gerado.

[editar]Evaporação do Buraco Negro

A principal limitação do Efeito Hawking é que ele é baseado em aproximações. Este efeito não está de acordo com o princípio de conservação de energia, uma vez que a irradiação de energia do buraco negro deveria ser contrabalanceada pela diminuição de sua massa, na mesma taxa de saída de energia. No entanto, para buracos negros macroscópicos a temperatura é muito baixa. A luminosidade do buraco negro é uma estimativa da vida de um buraco negro não-rotativo integrando-se a equação:
\frac{dM}{dT}=- \beta \frac{m^3}{Tp} \frac{1}{M^2}
Onde  \beta  é uma constante adimensional.
E o processo total de evaporação requer um grande tempo:
 \Delta t= \frac{tp}{3 \beta }( \frac{Mo}{mp} )^2
mp é a massa de Planck, a saber: 0.000022 g.

[editar]Informação no Buraco Negro

Há com o efeito da formação e subsequente evaporação do buraco negro uma consequência dramática: a perda de informação. Esta questão foi levantada em 1976 por Stephen Hawking. Entende-se que em um sentido refinado informação quântica seria perdida, o que desafiaria então Primeria Lei da Termodinâmica. A discussão era fácil e persuasiva e baseava-se na única ferramenta disponível naquela época: a teoria quântica de campo. Apesar da conclusão de Hawking estar sem dúvida errada, pôs em movimento velhas ideias que há muito tempo permaneciam paradas, desafiando-as com um novo paradigma. A teoria quântica apresenta um sério problema quando descreve sistemas com horizontes. Ela fornece uma densidade infinita de entropia em um buraco negro, diferente da densidade de Bekenstein-Hawking  \frac{c^3}{4G \hbar }.
Numa possibilidade final de se estabelecer uma saída lógica para este problema foi proposta a possibilidade dos buracos negros não evaporarem completamente. No lugar disso, vivem de maneira estável como remanescentes de massa de Planck que contém todas as informações perdidas. Obviamente estes remanescentes deveriam conter uma enorme, ou talvez infinita entropia. 

Nenhum comentário:

Postar um comentário